
Asynchronous & Synchronous Reset
Design Techniques - Part Deux

Clifford E. Cummings Don Mills Steve Golson
Sunburst Design, Inc. LCDM Engineering Trilobyte Systems
cliffc@sunburst-design.com mills@lcdm-eng.com sgolson@trilobyte.com
www.sunburst-design.com www.lcdm-eng.com www.trilobyte.com

2 of 33

Agenda
"Resets Update & FAQ"

• Flip-flop coding styles
• Synchronous resets
• Asynchronous resets
• Design For Test (DFT) considerations
• Reset-buffer tree

– Distributed synchronous reset flip-flops

– Distributed asynchronous reset synchronizers

• Synthesis issues with reset nets
• Multi-clock resets

Reference slides
only

3 of 33

rst_n becomes a
"load-data" signal

q2

clk

q1
rst_n

d

ld

module badFFstyle (q2, d, clk, rst_n);
 output q2;
 input d, clk, rst_n;
 reg q2, q1;

 always @(posedge clk)
 if (!rst_n) q1 <= 1'b0;
 else begin
 q1 <= d;
 q2 <= q1;
 end
endmodule

Bad Multi-Flip-Flop
Coding Style

• Problem: dissimilar flip-flops in the same always block

q2 is only loaded
if rst_n is high

BAD PARTITIONING Style
creates EXTRA LOGIC

VHDL model included in the paper

4 of 33

module goodFFstyle (q2, d, clk, rst_n);
 output q2;
 input d, clk, rst_n;
 reg q2, q1;

 always @(posedge clk)
 if (!rst_n) q1 <= 1'b0;
 else q1 <= d;

 always @(posedge clk)
 q2 <= q1;
endmodule

Good Multi-Flip-Flop
Coding Style

• Solution: put dissimilar flip-flops in separate always blocks

No reset on the
follower flip-flop

q2

clk

q1
rst_n

d

q2 is loaded on every
posedge clk

Good partitioning -
no extra logic

VHDL model included in the paper
Note: To model sequential logic
use nonblocking assignments

5 of 33

module ctr8sr (q, co, d, ld, rst_n, clk);
 output [7:0] q;
 output co;
 input [7:0] d;
 input ld, rst_n, clk;
 reg [7:0] q;
 reg co;

 always @(posedge clk)
 if (!rst_n) {co,q} <= 9'b0; // sync reset
 else if (ld) {co,q} <= d; // sync load
 else {co,q} <= q + 1'b1; // sync increment
endmodule

Modeling
Synchronous Resets

• Synchonous reset: rst_n is not in the sensitivity list

VHDL model included in the paper

VHDL versions would have required too
many slides to show the same models or a microscopic font

rst_n not in the
sensitivity list

6 of 33

Synchronous Resets
Synthesis Results #1

always @(posedge clk)
 if (!rst_n) {co,q} <= 9'b0;
 else if (ld) {co,q} <= d;
 else {co,q} <= q + 1'b1;

Synchronous rst_n
(added path delay)

rst_n & ld are not in
the sensitivity list

(synchronous to clk)

clk is in the
sensitivity list

Only clk can trigger
the always block

Only clk can cause the
outputs to change

q

co

clk

rst_n

i0

i1

sel1

+

d

ld

"1"

8899

9

8

1
9

7 of 33

Synchronous Resets
Synthesis Results #2

always @(posedge clk)
 if (!rst_n) {co,q} <= 9'b0;
 else if (ld) {co,q} <= d;
 else {co,q} <= q + 1'b1;

q

co

clk

rst_n i0

i1

sel1

+

d

ld

"1"

889

9

9

1

8

Synchronous rst_n
and-gates are outside

the mux

Synthesis tools could locate
synchronous resets signals poorly

Add this directive to avoid badly placed
synchronous reset signals

// synopsys sync_set_reset "rst_n"
always @(posedge clk)
 if (!rst_n) {co,q} <= 9'b0;
 else if (ld) {co,q} <= d;
 else {co,q} <= q + 1'b1;

8 of 33

Modeling
Asynchronous Resets

• Asynchonous reset: rst_n is in the sensitivity list

module ctr8ar (q, co, d, ld, rst_n, clk);
 output [7:0] q;
 output co;
 input [7:0] d;
 input ld, rst_n, clk;
 reg [7:0] q;
 reg co;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) {co,q} <= 9'b0; // async reset
 else if (ld) {co,q} <= d; // sync load
 else {co,q} <= q + 1'b1; // sync increment
endmodule

VHDL model included in the paper

rst_n is in the
sensitivity list

9 of 33

Synthesizing
Asynchronous Resets

always @(posedge clk or negedge rst_n)
 if (!rst_n) {co,q} <= 9'b0;
 else if (ld) {co,q} <= d;
 else {co,q} <= q + 1'b1;

asynchronous rst_n, in
the sensitivity list

Only clk or rst_n can cause
the outputs to change

q

co

clk

rst_n

i0

i1

sel1

+

d

ld

"1"

889

9

8

1

Asynchronous rst_n
(no extra path delay)

synchronous ld not
in the sensitivity list

clk or rst_n can trigger
the always block

10 of 33

Synchronous Resets
Advantages & Disadvantages

• Advantages

– Easier to work with cycle based simulators (according to the RMM)

– Typically recommended for DFT design

– Glitch filtering from reset combinational logic (to make up for poor
design practices)

– Glitch filtering if reset is in a mission-critical application

• Disadvantages

– May not be able to come out of Unknown-X during simulation

– May add delay to data path

– Power-up reseting of a tri-state bus
... but there is

a solution!

11 of 33

Tri-State Enable Drivers

clk

rst_n

oenext_oe

clk

rst_n

oe

next_oe

Easy with an
asynchronous resets

Not difficult with
synchronous resets

This path acts like an
asynchronous reset

12 of 33

Asynchronous Resets
Advantages & Disadvantages

• Advantages
– Reset is immediate

– No problem related to Unknown-X-propagation in design simulation
– Does not interfere or add extra delay to the data path

– Very easy to implement on the front end

• Disadvantages
– Asynchronous signal - can go metastable on release
– Noisy reset line could cause unwanted resets

– DFT requires extra steps

– Requires reset buffer tree manipulation

... but there is
a solution!

... but this can be
fixed

... but this can
be filtered

13 of 33

Asynchronous Reset Problem

• Problem: Asynchronous reset removal
– Will reset removal meet recovery time specification?

tpd trec

rst_n

clk

rst_n is
asynchronous

to clk

Potential problem: flip-flop could go
metastable on reset-release if reset

removal violates clock set/hold time

14 of 33

Flawed Reset Synchronizer
(ESNUG 409 Item 11)

Behavior is almost the
same for synchronous
or asynchronous reset

May change clock polarity if
necessary to fix reset
removal timing issues

rst_npad_rst_n

clkpad_clk

Reset
distribution
buffer tree

• Flawed recommendation by one ESNUG reader

chip_rst_n

And-gate added to remove reset
metastability if reset is asserted

too close to the active clock edge
(NOTE: this is not a real problem)

NOTE: this design is still
subject to metastability

Asynchronous-reset
flip-flop

15 of 33

"One reason not to use asynchronous resets is that Verilog cannot model
them without a race condition. Typical async reset flop:

"What happens when rst is DEasserted at the same time as ck is asserted?
Either ck goes high first, and rst is still low, so q gets zero.
Or rst goes high first, and when ck fires, q gets d.

Uh-oh. Do you get your new d or not?"

Flawed Reset RTL Thinking
(ESNUG 409 - Also Item 11)

A real hardware reset
recovery violation!

• Flawed RTL coding thoughts by another ESNUG reader

This is not a Verilog race condition,
this is a hardware race condition!

always @ (posedge ck or negedge rst) begin
 if (!rst) q <= 0;
 else q <= d;
end

Even with VHDL delta-times
this same "race" condition exists

16 of 33

always @ (posedge ck or negedge rst) begin
 if (!rst) q <= 0;
 else q <= d;
end

• Upon further investigation, the real issue was poor testbench
practices

Flawed Reset RTL Thinking
(ESNUG 409 - Also Item 11 - continued)

EDA vendors cannot fix real hardware race conditions!

Users blame EDA vendors when RTL
differs from gates simulations

Non-deterministic behavior between RTL and
gates (and between different vendors)

Don't be a stupid user! Don't try removing reset on a posedge clk in the testbench!
It doesn't work in simulations because it doesn't work in real hardware!!

Users remove reset on the
posedge clk in testbenches
Users remove reset on the
posedge clk in testbenches

(What?? No Way!!)

17 of 33

Reset Synchronizer

Asynchronous
reset assertion

When reset is de-asserted
asynchronously ...

... masterrst_n is removed
synchronously

rst_n

masterrst_n

pad_rst_n

clkpad_clk

Reset distribution
buffer tree

• Advantage: Asynchronous reset assertion
• Advantage: Synchronous reset removal

Guideline: EVERY ASIC USING AN ASYNCHRONOUS RESET
SHOULD INCLUDE A RESET SYNCHRONIZER CIRCUIT!!

18 of 33

Synchronous Reset Removal
Solution

• Advantage: Synchronous reset removal
– Predictable reset removal to meet recovery time specification!

rst_n

masterrst_n

clk

tclk-q tpd trec

Guideline: EVERY ASIC USING
AN ASYNCHRONOUS RESET
SHOULD INCLUDE A RESET
SYNCHRONIZER CIRCUIT!!

19 of 33

Reset Synchronizer
Verilog RTL Code

module reset_synchronizer (masterrst_n, clk, rst_n);
 output masterrst_n;
 input clk, rst_n;
 reg rst_n, rff1;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) {masterrst_n,rff1} <= 2'b0;
 else {masterrst_n,rff1} <= {rff1,1'b1};
endmodule

Asynchronous
reset assertion

(on negedge rst_n)

Synchronous
reset removal

(on posedge clk)

rst_n

masterrst_n

clk

Concatenation makes for efficient
coding of the reset synchronizer

Guideline: EVERY ASIC USING
AN ASYNCHRONOUS RESET
SHOULD INCLUDE A RESET
SYNCHRONIZER CIRCUIT!!

20 of 33

Synchronizer Metastability??
(Very Frequently Asked Question)

rst_n

0 masterrst_n

clk

• FAQ: Can the 2nd flip-flop of the synchronizer go metastable if rst_n is
removed too close to a posedge clk (violating reset recovery time)?

• Answer: NO !!

Input = 1
Output = 0

Input = 0
Output = 0

01

During reset: input=1 middle=0 output=0

If reset goes high at same
time that clk goes high:

input matches output and
no meta-stability possible

If reset goes high at same
time that clk goes high:
meta-stability possible

Flip-flop #1 input
does not

match output:

Flip-flop #2 input
matches output:

#1 #2

21 of 33

Reset Removal Metastability??

• Example flip-flop implementation

Loop1
D

RN

CK

cn

c

Q

QN
cn

c c

cn

cn

c

Loop2

c

cn

If the d-input is low when
reset is removed, is

metastability possible?

0

No - there is no
metastability

22 of 33

Different Reset Synchronizer
(ESNUG 409 - Also Item 11)

Disadvantage: now data,
rst_n and clk input might all

change at the same time

rst_n

masterrst_n

pad_rst_n

clkpad_clk

• Tie the synchronizer data input to the reset input signal

Disadvantage: extra load
on the reset signal

More unnecessary
opportunity for metastability

Replace input tied high with
connection to rst_n signal

23 of 33

Synopsys Reset Switches

set_drive 0

set_dont_touch_network

set_resistance 0

set_wire_load -port_list reset

set_ideal_net

set_false_path & set_disable_timing

Important reset-net switches

Standard switches
for reset nets

Apply 0-resistance to the reset
port with a custom wireload
model in which resistance=0

Added to v2001.08: to create
ideal nets and force no timing

updates, no delay optimization,
and no DRC fixing - use with

set_false_path & set_disable_timing
(SolvNet, Synthesis-780,
Physical_Synthesis-231,

Synthesis-482109)

To set 0-resistance on a reset net
(ESNUG #355, Item 2 &
ESNUG #356, Item 4)

Pre-Synopsys 2001.08 - do both

Synopsys 2001.08 - set_ideal_net
removes transition time propagation

Coming to Synopsys 2002.05 - set ideal "network"

24 of 33

rst_n

masterrst_n

Clock & Reset Loading

clk

Reset
distribution

tree

Clock distribution tree

NOTE:
clock loads # reset loads!!~~

25 of 33

masterrst_n

clk

rst_n

Reset distribution tree
(reset must be removed before

 the next rising clock edges)

Clock distribution
tree instantiation

Reset-
synchronizer
is driven from
a fanned-out

clock

Reset Buffer Tree
Driven from a Leaf-Driver Clock

Sometimes it is
difficult to tap
into the center

of the clock tree

26 of 33

Reset Buffer Tree
Driven from a Source-Driver Clock

masterrst_n

clk

rst_n

Reset distribution tree
(reset must not be removed

before the rising clock edges)

Clock distribution
tree instantiation

Reset-
synchronizer
is driven from

a source
clock driver

27 of 33

Synchronous Reset Distribution
using Flip-Flops

masterrst_nrst_n

clk

Reset distribution through
tree of synchronous

reset flip-flops

Clock distribution
tree instantiation

Module A
(RTL code)

Module B
(RTL code)

Module C
(RTL code)

Module D
(RTL code)

Input reset flip-flop
in each module

resets

resets

resets

resets

For the reset RTL in each module
// synopsys sync_set_reset <reset_name>

28 of 33

rst_n

drst_n

frst_n

Asynchronous Reset
Glitch Filtering

• Glitches on the rst_n input might cause stray resets
• Solution: glitch-filter on the rst_n input

frst_n

masterrst_n

clk

delay
rst_n

drst_n

De Morgan equivalent
"or"-gate

Delayed
reset

Filtered
reset

Low-asserted
asynchronous

reset

glitch delayed

filtered

reset

29 of 33

Asynchronous Reset & DFT

• The process of applying the ATPG vectors to create a test is
based on:
– scanning a known state into all the flip-flops in the chip
– switching the flip-flops from scan shift mode, to functional data input

mode

– applying one functional clock

– switching the flip-flops back to scan shift mode to scan out the result of
the one functional clock while scanning in the next test vector

– During the above process, the designer must insure that under NO
CONDITIONS, an asynchronous set/reset can occur and thus corrupt
the input vectors The asynchronous reset must be held in

the inactive state during the entire test

What about coverage to the portion of the chip controlled by the reset?

30 of 33

Asynchronous Reset & DFT

• Can I use an asynchronous reset with
Design For Test (DFT) strategies?
– scan in all ones into the scan chain
– issue and release the asynchronous reset

– scan out the result and scan in all zeros

– issue and release the reset

– scan out the result

– set the reset input to the non reset state
and then apply the ATPG generated
vectors

This will test for the reset
line attached to either the
asynchronous set or reset

of a flip-flop

31 of 33

Multiple Clock Domains
Non-Synchronized Reset Removal

arst_n

aclk

rst_n

brst_n

bclk

rst_n

crst_n

cclk

rst_n

This technique works if small
reset removal timing

differences are not a problem

All resets
removed at nearly

the same time

32 of 33

Multiple Clock Domains
Synchronized Reset Removal

This technique works
to force ordered
reset removal

Resets are
removed in an

ordered sequence

arst_n

aclk

1st

brst_n

bclk

2nd

crst_n

cclk

rst_n

3rd

33 of 33

Conclusions

• Synchronous resets:
– Add "synopsys sync_set_reset" directive to optimize synchronous

reset layout (and minimize X-state simulation problems)

– Easiest solution for doing Static Timing Analysis (STA)
– Easiest solution when working with DFT

• Asynchronous resets and the "Reset Synchronizer":
– Offers the advantages of asynchronous resets

– Offers the advantages of synchronous reset removal
– Still works well with DFT techniques

– Reset path is not as easily checked using STA

• Know the limitations of each reset strategy
– If you do it wrong it is gonna hurt!

