— e

.—

—Sunburst Design—

Wl
ﬂ STON
|'Tf'l|rla” o

!

Asynchronous & Synchronous Reset
Design Techniques - Part Deux

Clifford E. Cummings Don Mills Steve Golson
Sunburst Design, Inc. LCDM Engineering Trilobyte Systems
cliffc@sunburst-design.com mills@lcdm-eng.com sgolson@trilobyte.com

www.sunburst-design.com www.lcdm-eng.com www.trilobyte.com

2 of 33
N [] —
-
SlJ Agenda —Sunburst Design__
=l M Resets Update & FAQ" gl
2003
 Flip-flop coding styles
e Synchronous resets
e Asynchronous resets

« Design For Test (DFT) considerations «——— Refereg‘rf@ slides l

* Reset-buffer tree
— Distributed synchronous reset flip-flops
— Distributed asynchronous reset synchronizers

e Synthesis issues with reset nets
e Multi-clock resets

Tl Coding Style

Tty
2'&"_’;"' !)

S‘U[] Bad Multi-Flip-Flop

3 of 33
B | —

.—

—Sunburst Design—

* Problem: dissimilar flip-flops in the same always block

nodul e badFFstyle (q2, d, clk,
out put g2;
I nput d, clk, rst_n;

reg q2, qi;

al ways @ posedge cl k)
if (!'rst_n) gl <= 1'Db0O;
el se begin

Q ql <= d;
q2 <= ql;

rst_n);

BAD PARTITIONING Style
creates EXTRA LOGIC

d — ql
rst_n

Qg2

L Id
> >
:

clk

|

end
endnodul e

g2 is only loaded
if rst_nis high

rst _n becomes a
"load-data" signal

VHDL model included in the paper I

4 of 33

SU[] Good Multi-Flip-Flop —

B Coding Style b Desion—

Solution: put dissimilar flip-flops in separate always blocks

Good partitioning -
no extra logic

posedge cl k

Note: To model sequential logic
use nonblocking assignments VHDL model included in the paper I

nodul e goodFFstyle (g2, d, clk, rst_n);
out put g2;
input d, clk, rst_n; d— al L g2
 eg a2, qi; rst n—____/
> >
al ways @ posedge cl k)
if (!rst_n) ql <= 1'DbO; clk
el se ql <= d; T
al ways @ posedge cl k) No reset on the
L e follower flip-flop
endnodul e g2 is loaded on every l

200

BOSTON

.-""I,-"("v,l
”lJrJ‘I]

S‘U[] Modeling —

—Sunburst Design—

Synchronous Resets

5 of 33

Synchonous reset: r st _n is not in the sensitivity list

nodul e ctr8sr (g, co, d, |Id, rst_n, clk);
output [7:0] q;

out put Co;

input [7:0] d,

I nput ld, rst_n, clk; :

reg [7:0] q rst_qpqtm}he
reg co:; sensitivity list

al ways @ posedge cl k

endnodul e

| f ('rst_n)4«{co,q} <= 9 bO; /'l sync reset
else if (I1d) {co,q} <= d; /1l sync | oad
el se {co,q} <= g + 1'bl; // sync increnent

\nﬁDLrnodeIHuﬂudedinthepaperI

VHDL versions would have required too
many slides to show the same models ... ".oranﬂmmwcopmfontl

6 of 33

SU[] Synchronous Resets —a

_ —Sunburst Design__
ﬁ Synthesis Results #1 ~—
ibE

/ / /

~N
~N

/

9 8 8

[\
[|/
11
>
rst_n

Synchronous rst _n
(added path delay)
co

clk

cl k isinthe
sensitivity list

Only cl k can trigger
the al ways block

Only cl k can cause the —
outputs to change
al ways @ posedge cl k)
rst n&ldarenotin | f (!'rst_n) {co,q} <= 9 bO;
the sensitivity list else if (Id) {co,q} <= d;
(synchronous to cl k) el se {co,q} <= q + 1'bi;

7 of 33

nlj[] Synchronous Resets —al

_ _Sunburst Design__
ZHE] Synthesis Results #2 ~—
GG
2'&"_’;"' ! &)
Synthesis tools could locate i0))) g
synchronous resets signals poorly " § N A A
/E;E/ 1
T >

Synchronous rst _n
and-gates are outside
the mux

Add this directive to avoid badly placed
synchronous reset signals N
Cc

/'l synopsys sync_set reset "rst_n"

al ways @ posedge cl k)
| f (!'rst_n) {co,q} <= 9 bO;
else if (1d) {co,q} <= d;
el se {co,q} <= g + 1'bl;

CcO

—

«1 Asynchronous Resets
W)

S‘U[] Modeling —

—Sunburst Design—

8 of 33

e Asynchonous reset: r st _n is in the sensitivity list

nmodul e ctr8ar (q, co, d, Id, rst_n, clk);
output [7:0] q;

out put Cco;

input [7:0] d,

I nput ld, rst_n, clk; —

reg [7:0] g rst_n Isin the
reg co:; sensitivity list

al ways @ posedge cl k negedge rst _n)

| f ('rst_n)4«{co,q} <= 9 bO; /'l async reset

else if (I1d) {co,q} <= d; /1l sync | oad

el se {co,q} <= g + 1'bl; // sync increnent
endnodul e

\nﬁDLrnodeIHuﬂudedinthepaperI

S‘U[] Synthesizing

9 of 33
B | —

—
—Sunburst Design__
B A syynchronous Resets =~
2003
T]
wqn 9
e i0 q
\D ’ | // // //
il/ 9 S 8 8
d sell 11
Id S
//v
Only cl k or rst _n can cause Asynchronous rst_n
the outputs to change (no extra path delay)
co
cl k or rst_n can trigger o>
the al ways block st \‘

al ways @ posedge cl k or negedge rst _n)
| f (!'rst _n) {co,q} <= 9 bO;
else if (Id) {co,q} <= d;
el se {co,q} <= q + 1'bi;

synchronous | d not
In the sensitivity list

L
asynchronousrst _n,in
the sensitivity list

10 of 33

SU[J Synchronous Resets . Y—

: —Sunburst Design_
ﬁ Advantages & Disadvantages -
W)

« Advantages

— Easier to work with cycle based simulators (according to the RMM)

— Typically recommended for DFT design

— Gilitch filtering from reset combinational logic (to make up for poor
design practices)

— Gilitch filtering if reset is in a mission-critical application

* Disadvantages

— May not be able to come out of Unknown-X during simulation

— May add delay to data path

: : ... but there is
— Power-up reseting of a tri-state bus <« 2 solution! I

11 of 33

il S
AL Tri-State Enable Drivers —Sunburst Design—
2003 Easy with an
/ asynchronous resets
next_oe oe
clk S J
|
rst_n

Not difficult with

synchronous resets
next_oe

N
clk J J

rst_n This path acts like an
° asynchronous reset

12 of 33

S\IJ[] Asynchronous Resets T —

: —Sunburst Design_
ﬁ Advantages & Disadvantages -
W)

« Advantages
— Reset is immediate
— No problem related to Unknown-X-propagation in design simulation
— Does not interfere or add extra delay to the data path
— Very easy to implement on the front end

_ ... but there is
* Disadvantages a solution!
— Asynchronous signal - can go metastable on release

— Noisy reset line could cause unwanted resets « "'é’;;iﬂ‘;e‘éa” I
— DFT requires extra steps

— Requires reset buffer tree manipulation

... but this can be
fixed

13 of 33
N, || —

.—

Asynchronous Reset Problem —Sunburst Design—

Wl

BOSTON
A
2003

* Problem: Asynchronous reset removal
— Will reset removal meet recovery time specification?

t

. pd rec
Potential problem: flip-flop could go
metastable on reset-release if reset
> removal violates clock set/hold time
rst_ nis
asynchronous
to clk
® >
rst_n
@

14 of 33

N . — b ———
S[J[] FHawed Reset Synchronizer j—‘unburstqsigL
RET (ESNUG 409 Item 11) —

2008

* Flawed recommendation by one ESNUG reader

Reset
distribution
buffer tree

And-gate added to remove reset
metastability if reset is asserted
too close to the active clock edge

|
(NOTE: this is not a real problem) | >
May change clock polarity if

necessary to fix reset T o— — »

removal timing issues ™\ chip_rst_n |

J
> — ——»
pad_clk clk |7

pad_rst_n rst_n / \ >

Behavior is almost the
same for synchronous
or asynchronous reset

Asynchronous-reset
flip-flop NOTE: this design is still
subject to metastability

15 of 33

)
| Flawed Reset RTL Thinking ~ — 8l

—Sunburst Design__
IHC (ESNUG 409 - Also Item 11) =
2003

 Flawed RTL coding thoughts by another ESNUG reader

"One reason not to use asynchronous resets is that Verilog cannot model
them without a race condition. Typical async reset flop:

al ways @ (posedge ck or negedge rst) begin
if (!rst) q <= 0;
el se q <= d;

end

A real hardware reset
recovery violation!

"What happens when rst is DEasserted at the same time as ck is asserted?
Either ck goes high first, and rst is still low, so q gets zero.
Or rst goes high first, and when ck fires, q gets d.

This is not a Verilog race condition,
Uh-oh. Do you get your new d or not?" this is a hardware race condition!

Even with VHDL delta-times
this same "race" condition exists

SU[] Flawed Reset RTL

2008

R (ESNUG 409 - Also Item 11 - continued)

16 of 33

Cy oW ——
hinki ng —Sunburst Design—

« Upon further investigation, the real issue was poor testbench

practices

Users remove reset on the

—

if (!rst) q <= 0;
el se q <= d;
end

al ways @ (posedge ck or negedge rst) begin

posedge clk in testbenches
(What?? No Way!!)

Non-deterministic behavior between RTL and
gates (and between different vendors)

Users blame EDA vendors when RTL
differs from gates simulations

EDA vendors cannot fix real hardware race conditions! I

Don't be a stupid user! Don't try removing reset on a posedge clk in the testbench!

It doesn't work in simulations because it doesn't work in real hardware!!

17 of 33
N, || —

.—

Reset Synchronizer —Sunburst Design—

Wl

BOSTON
DA
2003

« Advantage: Asynchronous reset assertion
* Advantage: Synchronous reset removal

When reset is de-asserted |
asynchronously ... |

... masterrst_n is removed
I . — —
masterrst_n
 J

synchronously
”> >
pad_clk clk l’ (Asynchronous
- reset assertion | >
pad_rst_n rst_n l |

i

Reset distribution
Guideline: EVERY ASIC USING AN ASYNCHRONOUS RESET buffer tree
SHOULD INCLUDE A RESET SYNCHRONIZER CIRCUIT!!

v

18 of 33

SU[] Synchronous Reset Removal —

: —Sunburst Design_
= Solution -
W)

« Advantage: Synchronous reset removal
— Predictable reset removal to meet recovery time specification!

tclk-q tpd rec
> >

Guideline: EVERY ASIC USING
AN ASYNCHRONOUS RESET
SHOULD INCLUDE A RESET

SYNCHRONIZER CIRCUITH!

L | j masterrst_n
®
> >
clk lﬁ lﬁ
o >

rst_n l

19 of 33

) : oW ——
lJ[] Reset SynChronlzer —Sunburst Design__
2 Verilog RTL Code -

2@[[:)

T masterrst_n (O D)
Guideline: EVERY ASIC USING
S S AN ASYNCHRONOUS RESET
{ (SHOULD INCLUDE A RESET

SYNCHRONIZER CIRCUITH!

clk a)

rst_n l

nodul e reset _synchroni zer (masterrst _n, clk, rst_n);
out put masterrst_n;
I nput clk, rst_n;
reg rst_n, rffil;

al ways @ posedge cl k or negedge rstv

if (!rst_n) {masterrst_n,rff1} <= 2'bO; -
el se {masterrst_n,rffl} <= {rffl,1" bl}; « Synchronous

endnodul e _ y w y reset removal
hd e (on posedge clk)

Concatenation makes for efficient
coding of the reset synchronizer

Asynchronous
reset assertion
(on negedge rst_n)

20 of 33
N, || —

\
S[J[] Synchronizer Metastability?? —

_ —Sunburst Design__
«\ (Very Frequently Asked Question) -
200

 FAQ: Can the 2nd flip-flop of the synchronizer go metastable if rst_n is
removed too close to a posedge clk (violating reset recovery time)?

e Answer: NO !

During reset: input=1 middle=0 output=0

Flip-flop #1 input
does not
match output:

Input =1
Output =0

Input =0
Output =0

Flip-flop #2 input
matches output:

1 T 0 0 masterrst_n
If reset goes high at same #1 #9
time that clk goes high: \
meta-stability possible - > :
If reset goes high at same
time that clk goes high:
clk :
input matches output and
rst_n l no meta-stability possible

21 of 33

Reset Removal Metastability?? junb‘g_t“ asign_

Wl

BOSTON

2@@5231

o Example flip-flop implementation

If the d-input is low when
reset is removed, is
metastability possible?

Y

ON

cn No - thereis no
CK 4|>O_,_|>07 e metastability

LR (ESNUG 409 - Also Item 11)

2008

)
S[J[] Different Reset Synchronizer

22 of 33

— e

.—

—Sunburst Design—

» Tie the synchronizer data input to the reset input signal

Disadvantage: now data,
rst_n and clk input might all
change at the same time

More unnecessary
opportunity for metastability

Replace input tied high with >
connection to rst_n signal

pad_clk clk

>

masterrst_n

v

|

pad_rst n rst_n

l

AN

Disadvantage: extra load
on the reset signal

v

23 of 33
N, || —

.—

AL Synopsys Reset Switches _ Sunburst Design_—
WU Important reset-net switches I _
set _drive O

St?ndard switches I: —» set _dont _touch_network
or reset nets

To set O-resistance on areset net
(ESNUG #355, Item 2 &
ESNUG #356, Item 4)

|

> set _resistance O

Apply O-resistance to the reset
port with a custom wireload
model in which resistance=0

—> set _wre |oad -port |ist reset

Pre-Synopsys 2001.08 - do both I

Added to v2001.08: to create » set ideal net
ideal nets and force no timing — _
updates, no delay optimization, »set fal se path & set _disable timng
and no DRC fixing - use with
set_false path & set_disable timing Synopsys 2001.08 - set _i deal _net
(SolvNet, Synthesis-780, removes transition time propagation
Physical Synthesis-231,
Synthesis-482109) Coming to Synopsys 2002.05 - set ideal "network" I

24 of 33
N, || —

.—

Clock & Reset Loading —Sunburst Design_

Wl

BOSTON
2003
Clock distribution tree
clk
>—0— ® >
o A/// / >
I/ /
1<y . -
® ! -~
T masterrst_n . S -
barde 5
> > Reset ‘;>_.
distribution J-81 >
rst_n tree > S
_ I r> UL

NOTE:
clock loads = # reset loads!! ®

25 of 33

SU[] Reset Buffer Tree F— N

_ _ —Sunburst Design_
1Ll Briven from a Leaf-Driver Clock ~

Tty
2'&"_’;"' !)

Clock distribution
» tree instantiation
LS -

| \ *— —
A >
Sometimes it is)
difficult to tap *-
into the center ||). >
of the clock tree S
@
[
Reset-
synchronizer T masterrst_nﬁ»_ o« |
is driven from \ S
a fanned-out § @—> | '—>—‘
clock ‘_>_
rst_n l / > ——
> UL
Reset distribution tree

(reset must be removed before
the next rising clock edges)

26 of 33

SU[] Reset Buffer Tree F— N

_ _ —Sunburst Design_
ﬁ Driven from a Source-Driver Clock -
lkll’:ij
Clock distribution I
tree instantiation
clk . S
1S >
‘_)>
= >
® >
[

Reset-
synchronizer T masterrst_nﬁ»_ o« E—
Is driven from \ S
a source o—> - o—>—c
clock driver
>
rst_n > —
| / > UL
Reset distribution tree

(reset must not be removed
before the rising clock edges)

27 of 33

SU[] Synchronous Reset Distribution

u“ﬂll ugn FII -FIO S
o009 THIP-HOP

Input reset flip-flop
in each module

Reset distribution through

tree of synchronous i g II

reset flip-flops : Module A

N (RTL code)
rst_n masterrst_n Rtk atetshslohioty/staky shbrhetetstsislobeot
® —® : !

> : eséts | Module B

~ © o— > (RTL code) I

. e Ay S '

resets | Module C

o> (RTL code)
Clock distribution S A CEREE e L R ,
. . . —@ 1 :

tree instantiation |
o— > : resets Module D
. S (RTL code)

For the reset RTL in each module
/Il synopsys sync_set_reset <reset_name>

28 of 33
)
Asynchronous Reset —
: : : —Sunburst Design_
2008 Glitch Filtering ~
W)
« Glitches on the rst_n input might cause stray resets
« Solution: glitch-filter on the rst_n input
glitch delayed reset
---J!__--7---I //////
rst_n \ ~
drst_n \ //// T masterrst_n _[>_
frst_n ‘ / /_ ?

filtered {> (> >

/

clk
drst_n
delay ———O) frst_n
////,rSt_n I#lf O ‘\\\\\\\\\\

reset

Low-asserted Delayed Filtered
asynchronous reset l : reset l
y De Morgan equivalent
llO 1

29 of 33

Asynchronous Reset & DFT Junb‘“msugn_

Wl

BOSTON

2@@&1

* The process of applying the ATPG vectors to create a test is
based on:
— scanning a known state into all the flip-flops in the chip

— switching the flip-flops from scan shift mode, to functional data input
mode

— applying one functional clock

— switching the flip-flops back to scan shift mode to scan out the result of
the one functional clock while scanning in the next test vector

— During the above process, the designer must insure that under NO
CONDITIONS, an asynchronous set/reset can occur and thus corrupt

the input vectors The asynchronous reset must be held in
the inactive state during the entire test

What about coverage to the portion of the chip controlled by the reset? I

30 of 33

Asynchronous Reset & DFT Junb‘“msugn_

Wl

ﬂSTﬂII
2@@52&
« Can | use an asynchronous reset with
Design For Test (DFT) strategies?
— scan in all ones into the scan chain -

— Issue and release the asynchronous reset
— scan out the result and scan in all zeros

_ This will test for the reset

— issue and release the reset > line attached to either the

— scan out the result asynchronous set or reset
of a flip-flop

— set the reset input to the non reset state
and then apply the ATPG generated
vectors

2008

\ - -
Slj[] Multiple Clock Domains
At Non-Synchronized Reset Removal

31 of 33
N, || —

.—

This technique works if small T

reset removal timing
differences are not a problem

aclk lﬁ

rst_n
T

bclk lﬁ

rst_n
T

—Sunburst Design__
—
arst_n
All resets
removed at nearly
the same time
brst n
crst_n

cclk lﬁ

rst_n

2009

SU[] Multiple Clock Domains
A2 Synchronlzed Reset Removal

32 of 33
e ———

.—

—Sunburst Design—

This technique works
to force ordered
reset removal

3

arst_n

|

1st

Resets are

>
aclk (|) removed in an
l ordered sequence
2nd
@
bclk
3rd
crst_n
> >
cclk lﬁ
rst_n l

33 of 33
B | —

N
SU[] Conclusions —Sunburst Design
2003

e Synchronous resets:

— Add "synopsys sync_set reset" directive to optimize synchronous
reset layout (and minimize X-state simulation problems)

— Easiest solution for doing Static Timing Analysis (STA)

— Easiest solution when working with DFT

« Asynchronous resets and the "Reset Synchronizer":
— Offers the advantages of asynchronous resets

— Offers the advantages of synchronous reset removal
— Still works well with DFT techniques

— Reset path is not as easily checked using STA

 Know the limitations of each reset strategy
— If you do it wrong it is gonna hurt!

